
Connexions module: m11054 1

Fixed Point Arithmetic
Version 2.2: 2003/02/24

Hyeokho Choi

This work is produced by The Connexions Project and licensed under the
Creative Commons Attribution License ∗

Abstract

Fixed Point Arithmetic

1 Fixed-point arithmetic

This handout explains how numbers are represented in the �xed point TI C6211 DSP
processor. Because hardware can only store and process bits, all the numbers must be
represented as a collection of bits. Each bit represents either "0" or "1", hence the number
system naturally used in microprocessors is the binary system. This handout explains how
numbers are represented and processed in DSP processors for implementing DSP algorithms.

1.1 How numbers are represented

A collection of N binary digits (bits) has 2N possible states. This can be seen from ele-
mentary counting theory, which tells us that there are two possibilities for the �rst bit, two
possibilities for the next bit, and so on until the last bit, resulting in

2× 2× 2 · · · = 2N

possibilities or states. In the most general sense, we can allow these states to represent
anything conceivable. The point is that there is no meaning inherent in a binary word,
although most people are tempted to think of them as positive integers. However, the
meaning of an N -bit binary word depends entirely on its interpretation.

1.1.1 Unsigned integer representation

The natural binary representation interprets each binary word as a positive integer. For
example, we interpret an 8-bit binary word

b7b6b5b4b3b2b1b0

as an integer

x = b727 + b626 + · · ·+ b12 + b0 =
7∑

i=0

(
2ibi

)
∗http://creativecommons.org/licenses/by/1.0

http://cnx.rice.edu/content/m11054/latest/

Connexions module: m11054 2

This way, an N -bit binary word corresponds to an integer between 0 and 2N − 1. Con-
versely, all the integers in this range can be represented by an N -bit binary word. We call
this interpretation of binary words unsigned integer representation, because each word
corresponds to a positive (or unsigned) integer.

We can add and multiply two binary words in a straightforward fashion. Because all the
numbers are positive, the results of addition or multiplication are also positive.

However, the result of adding two N -bit words in general results in an N +1 bits. When
the result cannot be represented as an N -bit word, we say that an over�ow has occurred.
In general, the result of multiplying two N -bit words is a 2N bit word. Note that as we
multiply numbers together, the number of necessary bits increases inde�nitely. This is
undesirable in DSP algorithms implemented on hardware. So, later (Section 1.1.3) we will
introduce the fractional interpretation of binary words, to overcome this problem.

Another problem of the unsigned integer representation is that it can only represent
positive integers. To represent negative values, naturally we need a di�erent interpretation
of binary words, and we introduce the two's complement representation and corresponding
operations to implement arithmetic on the numbers represented in the two's complement
format.

1.1.2 Two's complement integer representation

Using the natural binary representation, an N -bit word can represent integers from 0 to
2N − 1. However, to represent negative numbers as well as positive integers, we can use
the two's complement representation. In 2's complement representation, an N -bit word
represents integers from (−2)N−1

to 2N−1 − 1.
For example, we interpret an 8-bit binary word

b7b6b5b4b3b2b1b0

as an integer

x = −
(
b727

)
+ b626 + · · ·+ b12 + b0 = −

(
b727

)
+

6∑
i=0

(
2ibi

)
in the 2's complement representation, and x ranges from −128 (−

(
27

)
) to 127 (27 − 1).

Several examples:

binary decimal

00000000 0

00000001 1

01000000 64

01111111 127

10000000 -128

10000001 -127

11000000 -64

11111111 -1

When x is a positive (negative) number in 2's complement format, −x can be found by
inverting each bit and adding 1. For example, 010000002 is 64 in decimal and −64 is found
by �rst inverting the bits to obtain 101111112 and adding 1, thus −64 is 110000002 as shown
in the above table. Because the MSB indicates the sign of the number represented by the

http://cnx.rice.edu/content/m11054/latest/

Connexions module: m11054 3

binary word, we call this bit the sign bit. If the sign bit is 0, the word represents positive
number, while negative numbers have 1 as the sign bit.

In 2's compliment representation, subtraction of two integers can be accomplished by
usual binary summation by computing x− y as x + (−y). We investigate the operations on
the 2's compliment numbers later (Section 1.2). However, when you add two 2's complement
numbers, you must keep in mind that the 1 in MSB is actually -1.

Exercise 1:

(2's complement): What are the decimal numbers corresponding to the 2's com-
plement 8-bit binary numbers; 010011012, 111001002, 011110012, and 100010112?

Solution:

Intentionally left blank.

Sometimes, you need to convert an 8-bit 2's complement number to a 16-bit number.
What is the 16-bit 2's complement number representing the same value as the 8-bit numbers
010010112 and 100101112? The answer is 00000000010010002 and 11111111100101112. For
nonnegative numbers (sign bit = 0), you simply add enough 0's to extend the number of
bits. For negative numbers, you add enough 1's. This operation is called sign extension.
The same rule holds for extending a 16-bit 2's complement number to a 32-bit number.

For the arithmetic assembly instructions, C62x CPU has di�erent versions depending on
how it handles the signs. For example, the load instructions LDH and LDB load halfword and
byte value to a 32-bit register with sign extension. That is, the loaded values are converted
to 32-bit 2's complement number and loaded into a register. The instructions LDHU and
LDBU do not perform sign extension. They simply �ll zeros for the upper 16- and 24-bits,
respectively.

For the shift right instructions SHR and SHRU, the same rule applies. The ADDU instruction
simply treats the operands as unsigned values.

1.1.3 Fractional representation

Although using 2's compliment integers we can implement both addition and subtraction by
usual binary addition (with special care for the sign bit), the integers are not convenient to
handle to implement DSP algorithms. For example, If we multiply two 8-bit words together,
we need 16 bits to store the result. The number of required word length increases without
bound as we multiply numbers together more. Although not impossible, it is complicated
to handle this increase in word-length using integer arithmetic. The problem can be easily
handled by using numbers between −1 and 1, instead of integers, because the product of
two numbers in [−1, 1] are always in the same range.

In the 2's complement fractional representation, an N bit binary word can represent 2N

equally space numbers from (−2)N−1

2N−1 = 1 to 2−(N−1)

2N−1 = 1− 2N−1.
For example, we interpret an 8-bit binary word

b7b6b5b4b3b2b1b0

as a fractional number

x =
−

(
b727

)
+ b626 + · · ·+ b12 + b0

27
= − (b7) +

6∑
i=0

(
2i−7bi

)
∈

[
−1, 1− 2−7

]
This representation is also referred as Q-format. We can think of having an implied

binary digit right after the MSB. If we have an N -bit binary word with MSB as the sign bit,

http://cnx.rice.edu/content/m11054/latest/

Connexions module: m11054 4

we have N−1 bits to represent the fraction. We say the number has Q-(N−1) format. For
example, in the example, x is a Q-7 number. In C6211, it is easiest to handle Q-15 numbers
represented by each 16 bit binary word, because the multiplication of two Q-15 numbers
results in a Q-30 number that can still be stored in a 32-bit wide register of C6211. The
programmer needs to keep track of the implied binary point when manipulating Q-format
numbers.

Exercise 2:

(Q format): What are the decimal fractional numbers corresponding to the Q-7
format binary numbers; 010011012, 111001002, 011110012, and 100010112?

Solution:

Intentionally left blank.

1.2 Two's complement arithmetic

The convenience of 2's compliment format comes from the ability to represent negative
numbers and compute subtraction using the same algorithm as a binary addition. The
C62x processor has instructions to add, subtract and multiply numbers in the 2's compliment
format. Because, in most digital signal processing algorithms, Q-15 format is most easy to
implement on C62x processors, we only focus on the arithmetic operations on Q-15 numbers
in the following.

1.2.1 Addition and subtraction

The addition of two binary numbers is computed in the same way as we compute the sum
of two decimal numbers. Using the relation 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 and 1 + 1 = 10,
we can easily compute the sum of two binary numbers. The C62x instruction ADD performs
this binary addition on di�erent operands.

However, care must be taken when adding binary numbers. Because each Q-15 number
can represent numbers in the range

[
−1, 1− 215

]
, if the result of summing two Q-15 numbers

is not in this range, we cannot represent the result in the Q-15 format. When this happens,
we say an over�ow has occurred. Unless carefully handled, the over�ow makes the result
incorrect. Therefore, it is really important to prevent over�ows from occurring when imple-
menting DSP algorithms. One way of avoiding over�ow is to scale all the numbers down
by a constant factor, e�ectively making all the numbers very small, so that any summation
would give results in the [−1, 1) range. This scaling is necessary and it is important to
�gure out how much scaling is necessary to avoid over�ow. Because scaling results in loss
of e�ective number of digits, increasing quantization errors, we usually need to �nd the
minimum amount of scaling to prevent over�ow.

Another way of handling the over�ow (and under�ow) is saturation. If the result is out
of the range that can be properly represented in the given data size, the value is saturated,
meaning that the value closest to the true result is taken in the range representable. Such
instructions as SADD, SSUB perform the operations followed by saturation.

Exercise 3:

(Q format addition, subtraction): Perform the additions 010011012 + 111001002,
and 011110012+100010112 when the binary numbers are Q-7 format. Also compute
010011012 − 111001002 and 100010112 − 001101112. In which cases, do you have
over�ow?

http://cnx.rice.edu/content/m11054/latest/

Connexions module: m11054 5

Solution:

Intentionally left blank.

1.2.2 Multiplication

Multiplication of two 2's complement numbers is a bit complicated because of the sign bit.
Similar to the multiplication of two decimal fractional numbers, the result of multiplying
two Q-N numbers is Q-2N , meaning that we have 2N binary digits following the implied
binary digit. However, depending on the numbers multiplied, the result can have either 1
or 2 binary digits before the binary point. We call the digit right before the binary point
the sign bit and the one proceeding the sign bit (if any) the extended sign bit.

The following is the two examples of binary fractional multiplications:

0.110 0.75 Q-3

X 1.110 -0.25 Q-3

0000

0110

0110

1010

1110100 -0.1875 Q-6

Above, all partial products are computed and represented in Q-6 format for summation.
For example, 0.110*0.010 =0.01100 in Q-6 for the second partial product. For the 4th
partial product, care must be taken because in 0.110*1.000, 1.000 represents −1, so the
product is -0.110 = 1.01000 (in Q-6 format) that is 2's complement of 0.11000. As
noticed in this example, it is important to represent each partial product in Q-6 (or in
general Q- 2N) format before adding them together. Another example makes this point
clearer:

1.110 -0.25 Q-3

X 0.110 0.75 Q-3

0000

111110

11110

0000

11110100 -0.1875 Q-6

For the second partial product, we need 1.110*0.010 in Q-6 format. This is obtained
as 1111100 in Q-6 (check!). A simple way to obtain it is to �rst perform the multiplication
in normal fashion as 1110*0010 = 11100 ignoring the binary points, then perform sign

extension by putting enough 1s (if the result is negative) or 0s (if the result is nonnegative),
then put the binary point to obtain a Q-6 number. Also notice that we need to remove the
extra sign bit to obtain the �nal result.

http://cnx.rice.edu/content/m11054/latest/

Connexions module: m11054 6

In C62x, if we multiply two Q-15 numbers using one of multiply instruction (for example
MPY), we obtain 32 bit result in Q-30 format with 2 sign bits. To obtain the result back in
Q-15 format, (i) �rst we remove 15 trailing bits and (ii) remove the extended sign bit.

Exercise 4:

(Q format multiplication): Perform the multiplications 01001101*11100100, and
01111001*10001011 when the binary numbers are Q-7 format.

Solution:

Intentionally left blank.

1.3 Assembly language implementation

When A0 and A1 contain two 16-bit numbers in the Q-15 format, we can perform the
multiplications using MPY followed by a right shift.

1 MPY .M1 A0,A1,A2

2 NOP

3 SHR .S1 A2,15,A2 ;lower 16 bit contains result

4 ;in Q-15 format

Rather than throwing away the 15 LSBs of the multiplication result by shifting, you can
round up the result by adding 0x4000 before shifting.

1 MPY .M1 A0,A1,A2

2 NOP

3 ADDK .S1 4000h,A6

4 SHR .S1 A2,15,A2 ;lower 16 bit contains result

5 ;in Q-15 format

1.4 C language implementation

Let's suppose we have two 16-bit numbers in Q-15 format, stored in variable x and y as
follows:

short x = 0x0011; /* 0.000518799 in decimal */

short y = 0xfe12; /* -0.015075684 in decimal */

short z; /* variable to store x*y */

The product of x and y can be computed and stored in Q-15 format as follows:

z = (x * y) > > 15;

The result of x*y is a 32-bit word with 2 sign bits. Right shifting it by 15 bits ignores
the last 15 bits, and storing the shifted result in z that is a short variable (16 bit) removes
the extended sign bit by taking only lower 16 bits.

http://cnx.rice.edu/content/m11054/latest/

